

Stantec Consulting Ltd. 199 Henlow Bay Winnipeg MB R3Y 1G4

December 15, 2022

Project/File: 123316272

Ali Campbell

Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4

Good day Ali,

Reference: Goulet Street Rehabilitation and Des Meurons Street Reconstruction

Stantec Consulting Ltd. (Stantec) was retained to undertake a factual geotechnical investigation for the Goulet Street rehabilitation and Des Meurons Street reconstruction projects located in Winnipeg, MB. Use of this report is subject to the Statement of General Conditions provided in **Appendix A**.

The subsurface coring and drilling sampling program was conducted on November 29-30 and December 5, 2022. Pavement coring was performed by our geotechnical field personnel, and drilling services were provided by Maple Leaf Drilling Ltd. under the supervision of our personnel. The borehole locations are shown on the attached Borehole Location Plan provided in **Appendix B**. The pavement cores were sampled with a 150 mm bit and boreholes were drilled with 125 mm solid stem augers. Geotechnical drilling boreholes were terminated at a depth of 2.3 m (Goulet St) and 2.9 m (Des Meurons St). Soil samples were obtained directly from the auger flights at depths of 0.6 m, 0.9 m, 1.2 m, 1.6 m, 2.0 m and 2.5 m from the bottom of the existing pavement. Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage. The borehole records are provided in **Appendix C**. The soil classification used in the borehole records is as per ASTM D2487 – *Standard Practice for Classification of Soils for Engineering Purposes*. Core photographs are provided in **Appendix D**.

The following laboratory tests were conducted on select soil samples:

- ASTM D2216 Laboratory Determination of Water (Moisture) Content of Soil by Mass
- ASTM D4318 Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D7928 Particle-Size Distribution of Fine-Grained Soils Using The Sedimentation Analysis
- ASTM D698 Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1883 California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- CSA A23.2-14C Obtaining and testing drilled cores for compressive strength testing

The CBR tests were performed at 95% maximum dry density and under soaked conditions, and the concrete compressive strength tests were conducted under wet conditions. The moisture content results are shown on the borehole records, and the laboratory test reports are provided in **Appendix E**.

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

Reference: Goulet Street Rehabilitation and Des Meurons Street Reconstruction

Regards,

STANTEC CONSULTING LTD.

Guillaume Beauce P.Eng.

Field Supervisor, Materials Testing Services

Phone: 204-928-7618 Mobile: 204-898-8290

guillaume.beauce@stantec.com

Attachment: Appendix A – Statement of General Conditions Appendix B – Borehole Location Plan

Appendix B – Borehole Location Plan Appendix C – Borehole Records Appendix D – Core Photographs Appendix E – Laboratory Test Reports **Jason Thompson** C.E.T.

Manager, Materials Testing Services

Phone: 204-928-4004 Mobile: 204-981-8445

jason.thompson@stantec.com

APPENDIX A

Statement of General Conditions

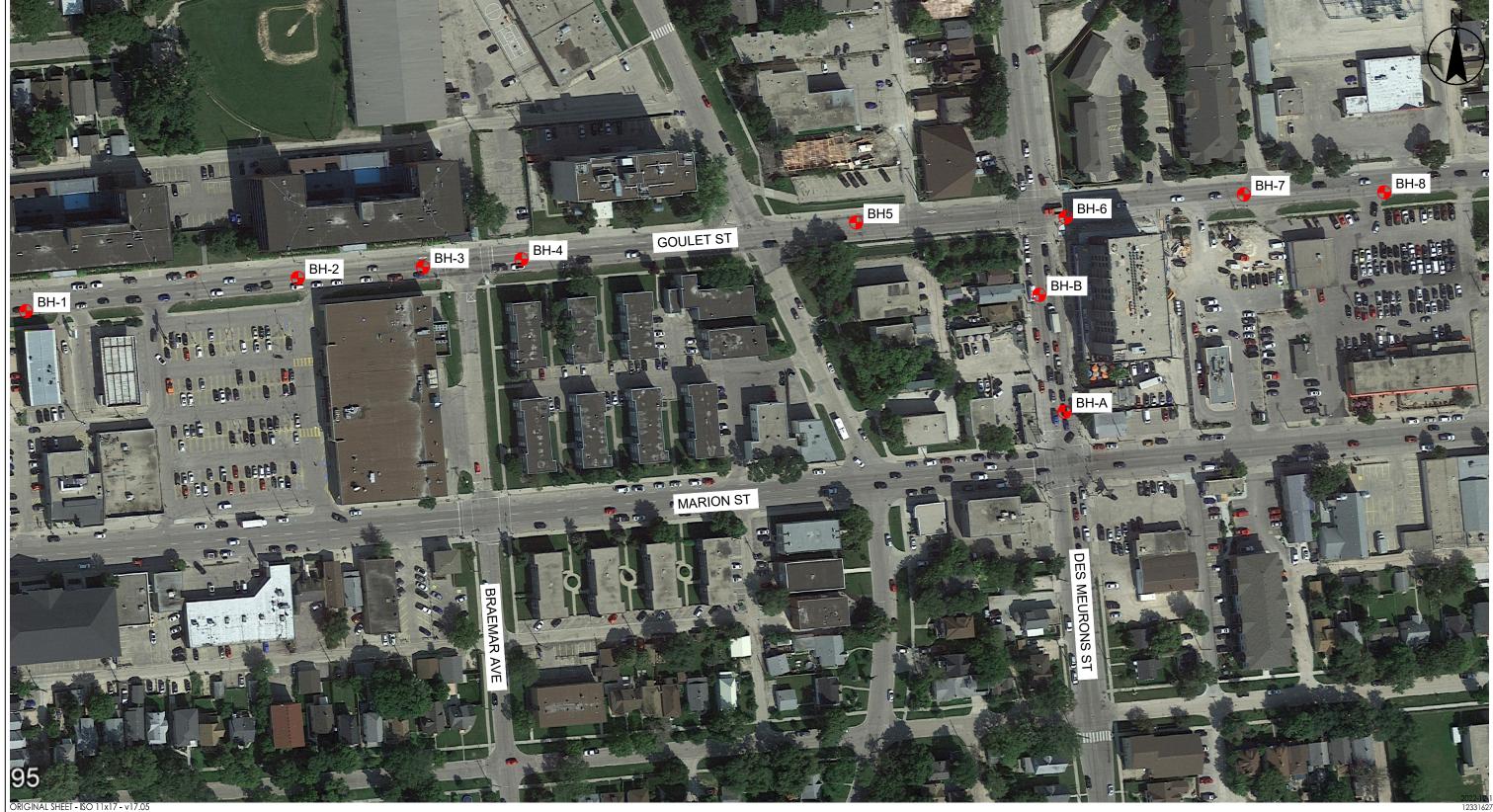
STATEMENT OF GENERAL CONDITIONS

USE OF THIS REPORT: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec and the Client. Any use which a third party makes of this report is the responsibility of such third party.

BASIS OF THE REPORT: The information, opinions, and/or recommendations made in this report are in accordance with Stantec's present understanding of the site-specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site-specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

STANDARD OF CARE: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

INTERPRETATION OF SITE CONDITIONS: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock, and groundwater conditions as influenced by geological processes, construction activity, and site use.


VARYING OR UNEXPECTED CONDITIONS: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec will not be responsible to any party for damages incurred as a result of failing to notify Stantec that differing site or sub-surface conditions are present upon becoming aware of such conditions.

PLANNING, DESIGN, OR CONSTRUCTION: Development or design plans and specifications should be reviewed by Stantec, sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc.), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec cannot be responsible for site work carried out without being present.

APPENDIX B

Borehole Location Plan

Stantec Consulting Ltd.
Suite 500, 311 Portage Avenue
Winnipeg MB Canada R3B 2B9
Tel. 204.489.5900 Fax. 204.453.9012
www.stantec.com

Legend

APPROXIMATE BOREHOLE LOCATION

Scale

Client/Project
DILLON CONSULTING LTD.
GOULET STREET REHABILITATION AND DES MEURONS STREET
RECONSTRUCTION, WINNIPEG, MB
Figure No.

gure No.

APPENDIX C

Borehole Records

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Rootmat	 vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%
Some	10-20%
Frequent	> 20%

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on page 3. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained Sh	ear Strength	Approximate
Consistency	kips/sq.ft.	kPa	SPT N-Value
Very Soft	<0.25	<12.5	<2
Soft	0.25 - 0.5	12.5 - 25	2-4
Firm	0.5 - 1.0	25 - 50	4-8
Stiff	1.0 - 2.0	50 – 100	8-15
Very Stiff	2.0 - 4.0	100 - 200	15-30
Hard	>4.0	>200	>30

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols. The dimensions within the strata symbols are not indicative of the particle size, layer thickness, etc.

Boulders Cobbles Gravel

Clay

Organics Asphalt

Igneous Bedrock morphic Bedrock

Sedimentary Bedrock

SAMPLE TYPE

SS	Split spoon sample (obtained by performing the Standard Penetration Test)
ST	Shelby tube or thin wall tube
₽	Direct-Push sample (small diameter tube
DF	sampler hydraulically advanced)
PS	Piston sample
BS	Bulk sample
HQ, NQ, BQ, etc.	Rock core samples obtained with the use
TIQ, NQ, BQ, EIC.	of standard size diamond coring bits.

WATER LEVEL MEASUREMENT

measured in standpipe, piezometer, or well

inferred

RECOVERY

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 12 to 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N-values corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

S	Sieve analysis
Н	Hydrometer analysis
k	Laboratory permeability
Υ	Unit weight
Gs	Specific gravity of soil particles
CD	Consolidated drained triaxial
CU	Consolidated undrained triaxial with pore
CU	pressure measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
С	Consolidation
Qυ	Unconfined compression
	Point Load Index (Ip on Borehole Record equals
Ιp	I_p (50) in which the index is corrected to a
	reference diameter of 50 mm)

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
, o	Falling head permeability test using casing
Y	Falling head permeability test using well point or piezometer

Second S	PR	IENT: OJEC	Stantec Dillon Consulting Ltd. Goulet Street Rehabilitation	tion	and				Street Reco		υC	lion							ВН	ELE	EVA	10IT.	۷: _	BH 33162 N/A	
SOIL DESCRIPTION (USCS) SOIL DESCRIPTION (USCS) SOIL DESCRIPTION (USCS) Applicati (0 - 90 mm) Concrete (70 - 300 mm)				,						— <u>,</u>	۸/۸	TED I	ΕV	'EI •	N	/ A			DΑ	۸UT	Μ: ₋	N,	/A		_
SOIL DESCRIPTION (USCs) SOIL DESCRIPTION (USCs) Asphalic (0 - 90 mm) Concrete (90 - 3000 mm)	DA	IE DO	DRED. <u>December 3, 2022</u>	T		2 A A A	DIES			_							IGTH	1, C	u (k	Pa)					Ī
Asphalt (0 - 90 mm)	DEPTH (m)	TION (m)		A PLOT				л %	OTHER TESTS /	L	ABO	ORAT KET F	OR'	Y TES	ST	▲		FIEL PO	.D V CKE	'ane t sh	EAR	'VAN		CKFILL/ FOR WELL/ OMETER	
Asphalt (0 - 90 mm) Concrete (90 - 300 mm) Concrete (90 - 300 mm) P Sa Sa Sa Sa Sa Sa Sa Sa Sa	DE	ELEVA	(uscs)	STRAT,	TYPE	NUMBE	ECOVERY or ICR ?	N-VALU or RQD	KEMAKKS					BLOV	NS/0).3m					W _P	. W	W _L	BAC MONII PIEZ	
End of Borehole Scoehole was terminated at a depth of 300 mm.	o		A l l . (0 00)	L			~			 	10)	20	3 : : :	Water 30	Conter 40	nt (%) a)	50				0	80		$\frac{1}{4}$
End of Borehole Borehole was terminated at a depth of 300 mm.			Aspnair (U - 90 mm)	200																					
End of Borehole Borehole was terminated at a depth of 300 mm.				22.23																					
End of Borehole Borehole was terminated at a depth of 300 mm.	-		Concrete (90 - 300 mm)	1																					
End of Borehole Borehole was terminated at a depth of 300 mm.				\dagger \dagge																					
End of Borehole * Borehole was terminated at a depth of 300 mm.	-			4																					
End of Borehole • Borehole was terminated at a depth of 300 mm.				<i>D</i> .																					
End of Borehole Borehole Grand and a depth of 300 mm.				D																					
			Borehole was terminated at a depth	D																					
	-																								
Drilling Contractor Stanton									Drilling Co	ntra	:: :::	r. C †	gn ^t	tec									0000	d Pva I s	
Drilling Contractor: Stantec Logged By: LE ACKFILL SYMBOL ASPHALT GROUT CONCRETE Drilling Method: Coring Reviewed By: BENTONITE DRILL CUTTINGS SAND SLOUGH Completion Depth: 0.300 m Page 1 of 1	۵۵۲	ÆII I	TIAHQ2A INAMY2		OLIT	<u> </u>	יכטי	VICPE						اتات											

	JENT:	Stantec Dillon Consulting Ltd. Goulet Street Rehabilita	tion	and				OLE RECOR	_	ctio	n											BH 33162 N/A	72
		ON: Winnipeg, MB							_								DAI	TUM	1: _	N/	Α		_
DA	ATE BC	DRED: <u>December 5, 2022</u>	<u>?</u>						_	/ATEI					IGTH	Cı	ı (kP	,a)					F
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT		MAS	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	LA	BOR.	ATO	RY TE N.	ST		F	POC	O VA	ANE	AR	200	kPa 	BACKFILL/ MONITOR WELL/ PIEZOMETER	
_	EE		STR	TYPE	NUMBER	RECOVER OT TO	o N RG		1	ATER T (N-v) BLO	WS/0	.3m					W _P	• •	₩ _L	- OM	
0 -		Asphalt (0 - 45 mm)	*			_				10	20	· ;	Water C	40	it (%) an	50 :		0	70	8	30		ł
			25																				
		Concrete (45 - 225 mm)	D																				
			D (I
			D D					Compressive strength test result = 52.2 MPa															
			D D					lesi fesuli – J2.2 MF d															
			D																				
-			D D																				
		End of Borehole • Borehole was terminated at a depth of 225 mm.	1																				
-																							
_																							
-																							
								D 6	<u> </u>		::-					1				T .	<u> </u>	1.5	
	ערווי י	CVAADOL ACDILALT	·]		<u> </u>	100	VIC-D-	Drilling Cor					•									d By: LE	
AC	KFILL S		GR SAI		·P	COI	NCRE UGH		thod													ved By:	

	JENT:	Stantec Dillon Consulting Ltd. Goulet Street Rehabilitat	ion	and				Street Reco		ctic	on										BH 331627 N/A	
		ON: Winnipeg, MB							_ ,,	, A TE	D. I. E.	3.7EL.	N 1 /				DATU	JM:	_N/	Α		_
DA	AIF RC	DRED: <u>December 5, 2022</u>	T		C A A A	DIFC			_			SHE			GTH.	Cu	(kPc	1)				Ē
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT		SAM	1	. 4%	OTHER TESTS / REMARKS	LA		ATO	RY TE N.	ST		FI P	IELD 'OCI	1AV	VE TE	R VAN	♦ E ■ O kPa	BACKFILL/ MONITOR WELL/ PIEZOMETER	
DE	ELEV/	(USCS)	STRAT	TYPE	NUMBER	RECOVERY or ICR	N-VALUE or RQD %	REMARKS				NTEN e) BLO	WS/0.	3m				W F	P W ●	w _L	BA MONI PIEZ	
0 -		Asphalt (0 - 120 mm)	2			<u> </u>				10	20		Water C	40		50 : :	60) ; : : : :	70 : : : :	80		F
		7 op. (c. 120 mm)	2000																			
			2000																			
		Concrete (120 - 315 mm)	5																			
			A V A																			
			N																			
			DVD																			
_			N D																			
		End of Borehole • Borehole was terminated at a depth of 315 mm.	A																			
_																						
-																						
_	•	1	l	<u> </u>	1	1	1	Drilling Co	ntrac	tor:	Sta	ntec	:			1.:	I		L	ogge	d By: LB	<u>ا</u>
BAC	KFILL : ENTOI		GR SAI	OUT		COI	NCREI UGH	Drilling Me Completic											F	eviev	ved By:	(

		T: Goulet Street Rehabilita ON: Winnipeg, MB			Des	Meı	Jrons	s Street Recor	_									√: <u> </u>	N/A
DA	TE BC	DRED: November 29-30,	2022						_		EVEL:								
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT	TYPE	NUMBER	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	LAB PO	CKET P 50 TER CO	D SHEAI DRY TES EN. kPa DNTENT e) BLOW	T ★ 100) kPc 	FIEL PO	D V/ CKET 150	ANE T SHEA kPa	AR VAN	♦ NE □ 100 kPa	BACKFILL/ MONITOR WELL/ PIEZOMETER
o				_		~] 1	0 2	20 30	ater Con	tent (%)	and Blo		50	70	80	
Ĭ		Asphalt (0 - 90 mm)	7																
		Concrete (90 - 229 mm)	D																
}		Soft black organic SILT (OH)																	
		- trace sand																	
				./															
				AS				Sieve/Hydro at 0.8 m G S M C 0% 3% 37% 60%						1					1
_																			
-				V															
-				AS AS														: 0:	
-																			
-				V AC															
4				AS															
-		Stiff brown fat CLAY (CH)																	
-																			
-				X AS															
1				V															
2 -																			
-																			
-				As													ρ:		
1		End of Borehole • No groundwater seepage or soil		*															
1		sloughing was observed during or upon completion of drilling.																	
1		Borehole was terminated at a depth of 2.3 m.																	
1																			
1																			
1																			
1																			

	JENT:	Stantec Dillon Consulting Ltd. Goulet Street Rehabilita	tion	and				Street Reco	_		tion												BH 33162 N/A	
		ON: Winnipeg, MB										_						DAI	ΓUΜ	۱: _	N/	Α		_
D/	ATE BO	DRED: <u>December 5, 2022</u>	<u> </u>						_		TER I		_			GTH	Cı	ı (kP	'a)					Ī
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT		SAM		.UE	OTHER TESTS / REMARKS	ı	LAB(ORAT CKET F	OR'	Y TES	ST		F	FIELD	O VA	NE.	AR '	VAN	♦ E ■ kPa	BACKFILL/ MONITOR WELL/ PIEZOMETER	
Δ	ELEV	. ,	STRA	TYPE	NUMBER	RECOVER OF TCR	N-VALUE or RQD %				ER C N-valu		BLOV	VS/O	.3m					W _P	W •	W _L	MON PIE	
0 -		Asphalt (0 - 60 mm)	73							10)	20	3	0 	40	t (%) an	50	6	Ö	70	}	30		_
		Concrete (60 - 290 mm)	D																					
-			D																					
			DA																					
_			D A D																					
			D D																					
			V V																					
-		End of Borehole • Borehole was terminated at a depth	I 4																					
		of 290 mm.																						
-																								
_																								
_																								
								Drilling Co					lec										d By: LE	
AC	KFILL :		GR ∴ SAI		<u> </u>	COI	NCRET UGH	E Drilling Me Completic													_	eviev age	ved By:	(

LO		Dillon Consulting Ltd. T: Goulet Street Rehabilitat ON: Winnipeg, MB	ion	and	Des	Meı	urons	s Street Recor	_ nstruc	tion					ВН	ELEV.	ATION	: <u> </u>	331627 N/A	
DA	TE BC	DRED: <u>November 29-30, 2</u>	2022							ATER L		_								_
DЕРТН (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT	TYPE	NUMBER	_	N-VALUE or RQD %	OTHER TESTS / REMARKS	PO	ORAT CKET F 50	ORY PEN. kPa H	TEST	★ 100	F kPa H ERBER	POCKE	'ANE TE T SHEA D kPa	R VAN	◆ E □) kPa + W _L	BACKFILL/ MONITOR WELL/ PIEZOMETER	
0 +		1 1 11 (0 55				~			 	10	20	30			d Blow Co		70 : : : :	80		L
-		Asphalt (0 - 55 mm) Concrete (55 - 295 mm)	A V A																	L
-		Stiff brown fat CLAY (CH) - trace organics																		ŀ
-																				
-				AS				Sieve/Hydro at 0.7 m G S M C 1% 4% 24% 71%			-	0								
-		- no organics below 0.9 m.		X AS									0							
-																				
-		- firm at 1.52 m.		Å AS									O : :							
				X AS							Ö									
2 -				¥																
-				X AS							0									
		End of Borehole No groundwater seepage or soil sloughing was observed during or upon completion of drilling. Borehole was terminated at a depth																		
-		of 2.3 m.																		
-																				
3 -		I			<u> </u>	1		Drilling Cor	ıtract	or: M	aple	Lec	af D	rilling	Ltd.	_	L	ogge	d By: LB	_

PR	IENT: OJEC	Dillon Consulting Ltd. Goulet Street Rehabilitation	tion	and				OLE RECOI	_	ıci	lion							ВН	ELE	VA٦	ION	: _	BH 33162 N/A
		ON: <u>Winnipeg, MB</u> DRED: <u>December 5, 2022</u>	<u> </u>						_ v	VA ⁻	TER L	_EV	EL	N/	'Α			DΑΊ	IUM	۱: _	N/	Α	
					SAM	PLES			_		AINE		_			IGTH	, Cı	(kP	a)				
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT			1	. 4%	OTHER TESTS / REMARKS			ORAT KET F 50				▲ ★ 00 k	F	200	KET	SHE kPa	AR	VANI	♦ ■ kPa	BACKFILL/ MONITOR WELL/ PIEZOMETER
DE	ELEV,	(0303)	STRAT	TYPE	NUMBER	RECOVERY or TCR	N-VALUE or RQD %	KEMPARIO			ER Co		BLOV	WS/O	.3m					W _P	W O	W _L	BA MONI PIEZ
0 -		Asphalt (0 - 30 mm)	*			_				10) :	20	3	Vater 0	40 :::	t (%) ar	50		Ö	70) {	30	
		Concrete (30 - 215 mm)	Ž X D																				
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																				
-			A V A					Compressive strength															
								test result = 56.6 MPa															
			DV																				
		End of Borehole • Borehole was terminated at a depth of 215 mm.	<i>D</i>																				
		Of 213 filling																					
_																							
					-	1.		Drilling Cor					ec										d By: LE
	KFILL S ENTOI		GR SAI		- <u> </u>	(OD)	NCRE UGH	TE Drilling Met Completio													_	eviev age	ved By:

PR	IENT: OJEC	Stantec Dillon Consulting Ltd. T:Goulet Street Rehabilita	tion	and				Street Reco	_		tion						Е	BH E	LEV	'ATIC	ON:		BH 33162 N/A	
		DN: Winnipeg, MB									TED I	E\ //	-1.	NI /				TAC	UM:		N/A	\		_
DA	VIE RC	DRED: <u>December 5, 2022</u>	<u>'</u>			D. 50			_		TER L		_			GTH.	Cu	(kPc	a)				1	Ī
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT			PLES (ww)	2 M %	OTHER TESTS / REMARKS		LAB	ORATO CKET F	ORY	TES	T 4		F P	IELD OC	VA	NE TI SHEA	AR V	ANE 200 I		BACKFILL/ MONITOR WELL/ PIEZOMETER	
	ELEV	(3555)	STRA	TYPE	NUMBER	RECOVERY or ICR	N-VALUE or RQD %				ER Co		LOW	VS/0.3	3m	(%) and			,	V _P \	w \ ⊖	∀ ∟ -1	MON PIE	
0 -		Asphalt (0 - 35 mm)								10) <u>2</u>	20	30	0	40	(70) GIIC	50	60)	70	80	0		
		Concrete (35 - 230 mm)	<i>D</i>																					
			A V A																					
-																								
			DV																					
			DA																					
			D A																					
		 End of Borehole Borehole was terminated at a depth of 230 mm. 																						
-																								
-																								
]									1		C1		<u>::</u>			:::							1.5	1
. ~	/FII : :	W44501 M 155000	.]	· · · · · -	<u> </u>	1	1055	Drilling Co					eC										d By: LE	
	KFILL S ENTON		GR SAI		<i>∵⊵</i> ‱		NCRE UGH	E Drilling Me Completic					00									ige	ved By:	_

	OJEC	Dillon Consulting Ltd. T: Goulet Street Rehabilitat ON: Winnipeg, MB			Des	Ме	uron	s Street Recor	_							I ELEV	/OITA	l:	N/A
DA	TE BC	DRED: <u>November 29-30, 2</u>	2022							ATER LI				CTLL	Cu III				
легін (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT	TYPE	NUMBER	_	N-VALUE or RQD %	OTHER TESTS / REMARKS	PO WA	ORAINEI BORATO CKET PI 50 ATER CO	ORY TEEN. kPa ONTEN BLO	1 1 1 & 7 WS/0	▲ ★ 00 ki H ATTER	FI P Pa	ELD V OCKE	YANE TI ET SHEA O kPa H	AR VAN 200	◆ E □) kPa H	BACKFILL/ MONITOR WELL/ PIEZOMETER
o 🚽		Asphalt (0 - 190 mm)	24	1					::::	10 2		30	40			60	70	80	
1			***																
]		Concrete (190 - 320 mm)	D																
-		Stiff brown fat CLAY (CH) - trace wood chips																	
-																			
-				X AS				Sieve/Hydro at 0.8 m G S M C 0% 2% 22% 76%			1	1::0						-1	
-				X as															
		- no wood chips, firm at 1.22 m.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															
-				AS							:0:								
-				V															
2 -				Ä AS								0							
				X AS							Ö								
-																			
				X AS											Ö				
] -		End of Borehole No groundwater seepage or soil																	
-		sloughing was observed during or upon completion of drilling. • Borehole was terminated at a depth of 2.9 m.																	
1																			
-																			
-																			

PR	LIENT:	CT: Goulet Street Rehabilitat	lion	and				OLE RECOI	_	ctio	n						BH	l EL	EVA	MOIT	: _	BH 33162: N/A	72
		ON: Winnipeg, MB DRED: November 29-30, 2	2022)						ATEI) I E	:\/⊑I		I / A			DA	ATU	M:	N/	Α		
D/	AIE DC	DRED: <u>November 29-30, 2</u>	1022	•	SAM	PLES			_							TH,	Cu (k	(Pa)					F
DEРТН (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT	TYPE	NUMBER		N-VALUE or RQD %	OTHER TESTS / REMARKS	PC W/		T PE 50 k	:N. :Pa :NTEI	NT 8	★ 100	kPo ERB	P(ET SH 60 KF	HEAR	200	◆ kPa W _L	BACKFILL/ MONITOR WELL/ PIEZOMETER	
0 -		Apply of the page 1				~			1:::	10	20) :::	30		ent (%,) and 5(Blow Co	60 : :	7	0 (30 : : : :		ļ
=		Asphalt (0 - 145 mm) Concrete (145 - 340 mm)																					ŀ
-		Concrete (145 - 340 mm)	V												::								ļ
-		Stiff brown fat CLAY (CH)																					-
-				V AS				Sieve/Hydro at 0.8 m															-
1 -								G S M C 0% 2% 26% 72%															-
-		- firm at 1.37 m.		Ä AS									:0:										ŀ
-				X AS								O ::											
-				X AS								0											-
2 -				√ AS								Ö											
-				<u> </u>																			-
-				X AS								0											-
3 -		End of Borehole • No groundwater seepage or soil sloughing was observed during or upon completion of drilling.																					-
-		Borehole was terminated at a depth of 2.9 m.																					-
-																							-
-																							-
4								Drilling Cor	ntrac	tor.		nle		ıf D	: : rillir	 nc	Itd	<u>: :</u>				 d By: LB	L
	ערוון (symbol Rasphalt	□GR	OUT	F.:		NCRE							ں		·9						ved By:	

APPENDIX D

Core Photographs

Figure 1 – Core No. 1 (Goulet St)

Figure 3 – Core No. 3 (Goulet St)

Figure 2 – Core No. 2 (Goulet St)

Figure 4 – Core No. 4 (Goulet St)

Figure 5 – Core No. 5 (Goulet St)

Figure 7 – Core No. 7 (Goulet St)

Figure 6 – Core No. 6 (Goulet St)

Figure 8 – Core No. 8 (Goulet St)

Figure 9 – Core A (Des Meurons St)

Figure 10 – Core B (Des Meurons St)

APPENDIX E

Laboratory Test Reports

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 PROJECT Goulet Street Rehabilitation and Des Meurons Street Reconstruction

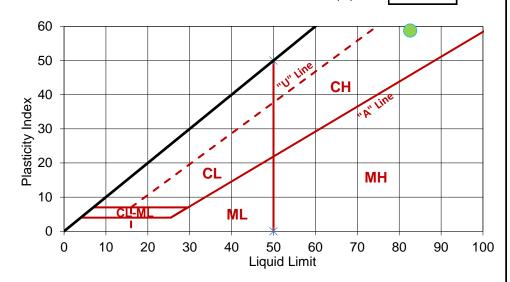
PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 1

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.07

SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson TESTED BY: Larry Presado

SAMPLE ID: BH-A, AC at 0.91 m


LIQUID LIMIT

TRIAL BLOWS MC (%) Corr. MC (%)

LIQUIL	LIIVII I
1	2
22	21
84	84
83	82

	PLASTI	C LIMIT
TRIAL	1	2
MC (%)	24	24

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

COMMENTS:

REPORT DATE 2022.Dec.08

REVIEWED BY

Guillaume Beauce, P.Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 PROJECT Goulet Street Rehabilitation and Des Meurons Street Reconstruction

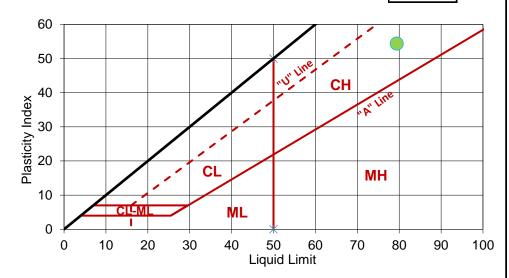
PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 2

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.07

SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson TESTED BY: Larry Presado

SAMPLE ID: BH-B, AC at 0.95 m


LIQUID LIMIT

TRIAL BLOWS MC (%) Corr. MC (%)

2
28
78
79

	PLASTI	C LIMIT
TRIAL	1	2
MC (%)	25	25

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

COMMENTS:

REPORT DATE 2022.Dec.08

REVIEWED BY

Guillaume Beauce, P.Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 PROJECT Goulet Street Rehabilitation and
Des Meurons Street Reconstruction

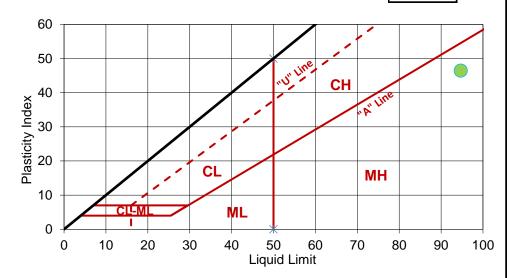
PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 3

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.07

SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson TESTED BY: Jemal Ibrahim

SAMPLE ID: BH-4, AC at 0.88 m


LIQUID LIMIT

TRIAL BLOWS MC (%) Corr. MC (%)

LIQUIL	LIIVII I
1	2
22	22
96	97
94	95

	PLASTI	C LIMIT
TRIAL	1	2
MC (%)	49	48

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

COMMENTS:

REPORT DATE 2022.Dec.08

REVIEWED BY

Guillaume Beauce, P.Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 PROJECT Goulet Street Rehabilitation and Des Meurons Street Reconstruction

PROJECT NO. 123316272

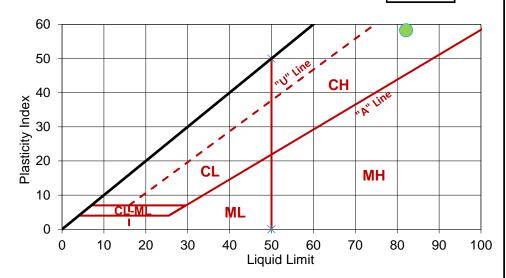
ATTN: Ali Campbell REPORT NO. 4

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.07

SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson TESTED BY: Larry Presado

SAMPLE ID: BH-6, AC at 0.82 m

LIQUID LIMIT


TRIAL BLOWS MC (%) Corr. MC (%)

LIQUID LIMIT			
1	2		
25	25		
82	82		
82	82		

	PLASTIC LIMIT		
TRIAL	1	2	
MC (%)	24	24	

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

COMMENTS:

REPORT DATE 2022.Dec.08

REVIEWED BY

Guillaume Beauce, P.Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

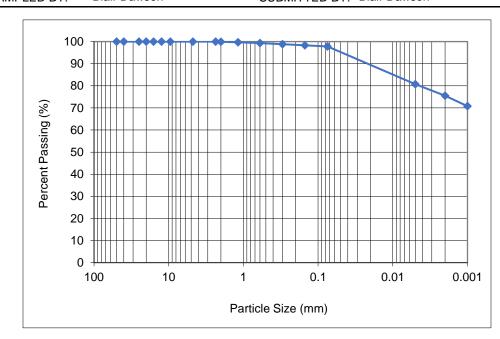
Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Limited

1558 Willson Place Winnipeg, MB R3T 0Y4 **PROJECT**

Goulet Street Rehabilitation and


Des Meurons Street Reconstruction

PROJECT NO.

123316272

ATTN: Ali Campbell REPORT NO.

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED: 2022.Dec.02 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Larry Presado TESTED BY:

Gravel	Sand		Silt Clay		Colloids	
Glavei	Coarse	Medium	Fine	SIIL	Clay	Collolus
0.0	0.1	0.6	1.5	22.3	75.5	70.8

SIEVE SIZE (mm)	% PASSING
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	100.0
2.36	100.0
2.00	99.9
1.18	99.7
0.600	99.3
0.300	98.8
0.150	98.3
0.075	97.8
0.005	80.7
0.002	75.5
0.001	70.8
-	

COMMENTS:

Material tested identified as BH-A, AC at 0.91 m.

REPORT DATE 2022.Dec.08

REVIEWED BY Guillaume Beauce, P. Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

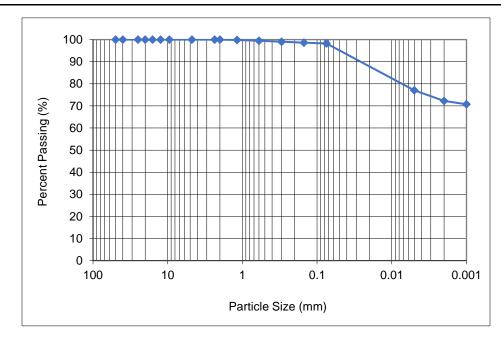
ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Limited 1558 Willson Place

Winnipeg, MB R3T 0Y4

PROJECT

Goulet Street Rehabilitation and


Des Meurons Street Reconstruction

PROJECT NO.

123316272

ATTN: Ali Campbell REPORT NO.

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED: 2022.Dec.02 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Larry Presado TESTED BY:

Gravel		Sand		Silt Clay		Silt Clay Collo		Colloids
Glavei	Coarse	Medium	Fine	SIII	Clay	Collolus		
0.0	0.0	0.5	1.3	26.0	72.2	70.7		

SIEVE SIZE (mm)	% PASSING
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	100.0
2.36	100.0
2.00	100.0
1.18	99.8
0.600	99.5
0.300	99.0
0.150	98.6
0.075	98.2
0.005	77.0
0.002	72.2
0.001	70.7

COMMENTS:

Material tested identified as BH-B, AC at 0.95 m.

REPORT DATE 2022.Dec.08

REVIEWED BY Guillaume Beauce, P. Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

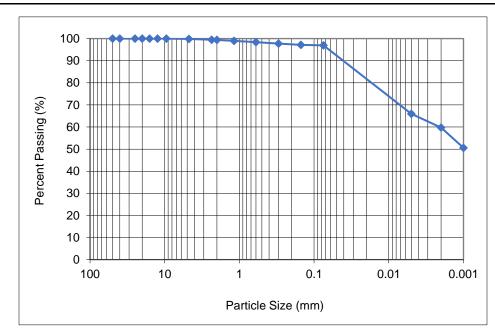
Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Limited 1558 Willson Place

Winnipeg, MB R3T 0Y4

PROJECT


Goulet Street Rehabilitation and

Des Meurons Street Reconstruction

PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO.

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED: 2022.Dec.02 Blair Dawson SUBMITTED BY: Blair Dawson Larry Presado SAMPLED BY: TESTED BY:

Gravel		Sand		Silt Clay		Silt Clay Collo	Colloids
Glavei	Coarse	Medium	Fine	SIIL	Clay	Collolus	
0.1	0.5	1.0	1.5	37.2	59.7	50.6	

SIEVE SIZE (mm)	% PASSING
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	99.9
2.36	99.5
2.00	99.4
1.18	99.0
0.600	98.4
0.300	97.7
0.150	97.2
0.075	96.9
0.005	65.9
0.002	59.7
0.001	50.6

COMMENTS:

Material tested identified as BH-4, AC at 0.88 m.

REPORT DATE 2022.Dec.08

REVIEWED BY Guillaume Beauce, P. Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

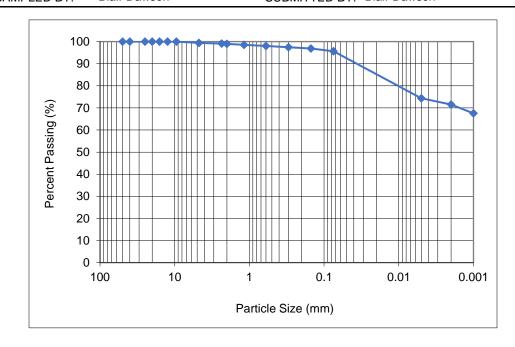
TO Dillon Consulting Limited

1558 Willson Place Winnipeg, MB R3T 0Y4 **PROJECT**

Goulet Street Rehabilitation and

Des Meurons Street Reconstruction

PROJECT NO.


123316272

ATTN: Ali Campbell REPORT NO.

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED 2022.Nov.30 Blair Dawson SUBMITTED BY: Blair Dawson SAMPLED BY:

DATE TESTED: 2022.Dec.02

Larry Presado TESTED BY:

Gravel	Sand		Silt	Clay	Colloids	
Glavei	Coarse	Medium	Fine	SIII	Clay	Collolus
0.6	0.5	0.9	2.4	24.1	71.5	67.5

SIEVE SIZE	%
(mm)	PASSING
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	99.4
2.36	99.1
2.00	98.9
1.18	98.5
0.600	98.0
0.300	97.4
0.150	96.8
0.075	95.6
0.005	74.4
0.002	71.5
0.001	67.5

COMMENTS:

Material tested identified as BH-6, AC at 0.82 m.

REPORT DATE 2022.Dec.08

REVIEWED BY Guillaume Beauce, P. Eng.

Associate - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

PROCTOR TEST REPORT

Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4

Dillon Consulting Limited CLIENT C.C.

ATTN: Ali Campbell

PROJECT Goulet Street Rehabilitation and Des Meurons Street Reconstruction

None

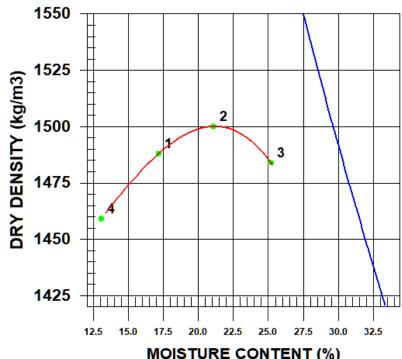
PROJECT NO. 123316272

INSITU MOISTURE

SUPPLIER

PROCTOR NO. DATE SAMPLED 2022. Nov. 30 DATE RECEIVED 2022. Nov. 30 DATE TESTED 2022.Dec.02

> 25.2 % COMPACTION STANDARD Standard Proctor.


ASTM D698 **TESTED BY** Donald Eliazar

MATERIAL IDENTIFICATION COMPACTION PROCEDURE A: 101.6mm Mold,

Passing 4.75mm MATERIAL USE Subgrade

MAX. NOMINAL SIZE RAMMER TYPE Manual MATERIAL TYPE **PREPARATION** Moist Clay OVERSIZE CORRECTION METHOD

SOURCE BH-A, AC at 0.91 m **RETAINED 4.75mm SCREEN**

Existing Materials

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1744	1488	17.2
2	1817	1500	21.1
3	1858	1484	25.2
4	1650	1459	13.1

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1500	21.0
OVERSIZE CORRECTED		

COMMENTS

REVIEWED BY √uson Thompson, C.E.T.

Page 1 of 1 2022.Dec.05

PROCTOR TEST REPORT

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 CLIENT Dillon Consulting Limited C.C.

ATTN: Ali Campbell

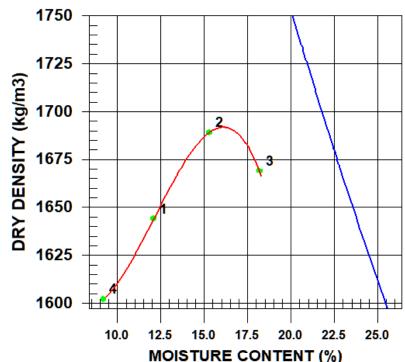
PROJECT Goulet Street Rehabilitation and
Des Meurons Street Reconstruction

PROJECT NO. 123316272

INSITU MOISTURE

PROCTOR NO. 2 DATE SAMPLED 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED 2022.Dec.02

25.2 % COMPACTION STANDARD Standard Proctor,


TESTED BY Donald Eliazar ASTM D698

MATERIAL IDENTIFICATION COMPACTION PROCEDURE A: 101.6mm Mold,

MATERIAL USE Subgrade Passing 4.75mm

MAX. NOMINAL SIZE RAMMER TYPE Manual MATERIAL TYPE Clay PREPARATION Moist SUPPLIER Existing Materials OVERSIZE CORRECTION METHOD None

SOURCE BH-B, AC at 0.95 m RETAINED 4.75mm SCREEN

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1843	1644	12.1
2	1947	1689	15.3
3	1973	1669	18.2
4	1749	1602	9.2

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1690	16.0
OVERSIZE CORRECTED		

COMMENTS

REVIEWED BY Ason Thompson, C.E.T.

Page 1 of 1 2022.Dec.05

PROCTOR TEST REPORT

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 CLIENT Dillon Consulting Limited C.C.

ATTN: Ali Campbell

PROJECT Goulet Street Rehabilitation and
Des Meurons Street Reconstruction

PROJECT NO. 123316272

INSITU MOISTURE

PROCTOR NO. 3 DATE SAMPLED 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED 2022.Dec.05

69.9 % COMPACTION STANDARD Standard Proctor,
Donald Fliazar ASTM D698

RAMMER TYPE

TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION COMPACTION PROCEDURE

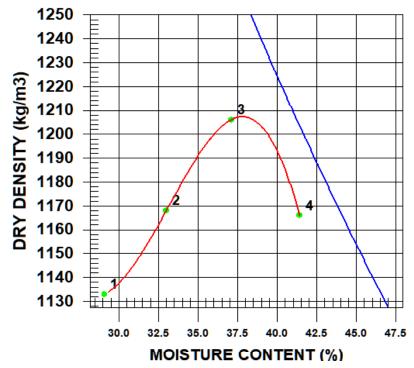
A: 101.6mm Mold,

MATERIAL USE Subgrade

Passing 4.75mm

Manual

MAX. NOMINAL SIZE


MATERIAL TYPE Organic Silt

SUPPLIER Existing Materials

PREPARATION Moist
OVERSIZE CORRECTION METHOD None

SOURCE BH-4, AC at 0.88 m

RETAINED 4.75mm SCREEN

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1463	1133	29.1
2	1554	1168	33.0
3	1654	1206	37.1
4	1649	1166	41.4

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1210	38.0
OVERSIZE CORRECTED		

COMMENTS

REVIEWED BY Jason Thompson, C.E.T.

Page 1 of 1 2022.Dec.06

PROCTOR TEST REPORT

TO Dillon Consulting Limited 1558 Willson Place Winnipeg, MB R3T 0Y4 CLIENT Dillon Consulting Limited C.C.

ATTN: Ali Campbell

PROJECT Goulet Street Rehabilitation and Des Meurons Street Reconstruction

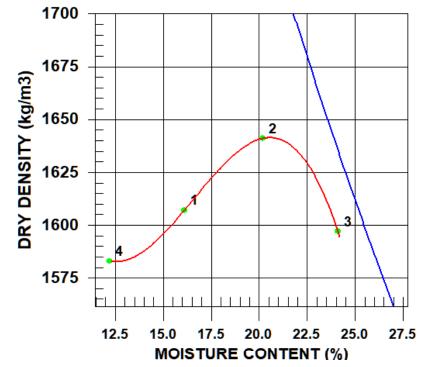
PROJECT NO. 123316272

INSITU MOISTURE

PROCTOR NO. 4 DATE SAMPLED 2022.Nov.30 DATE RECEIVED 2022.Nov.30 DATE TESTED 2022.Dec.05

25.2 % COMPACTION STANDARD Standard Proctor,

TESTED BY Donald Eliazar ASTM D698


MATERIAL IDENTIFICATION COMPACTION PROCEDURE A: 101.6mm Mold,

MATERIAL USE Subgrade Passing 4.75mm

MAX. NOMINAL SIZE RAMMER TYPE Manual

MAX. NOMINAL SIZE RAMMER TYPE Manual MATERIAL TYPE Clay PREPARATION Moist SUPPLIER Existing Materials OVERSIZE CORRECTION METHOD None

SOURCE BH-6, AC at 0.82 m RETAINED 4.75mm SCREEN

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1866	1607	16.1
2	1973	1641	20.2
3	1982	1597	24.1
4	1776	1583	12.2

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1640	20.5
OVERSIZE CORRECTED		

COMMENTS

REVIEWED BY Ason Thompson, C.E.T.

Page 1 of 1 2022.Dec.06

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

O Dillon Consulting Ltd. PROJECT Goulet Street Rehabilitation &

Des Meurons Street Reconstruction

Winnipeg, MB

1558 Willson Place

R3T 0V4 PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 1 (Data page - see Page 2 for Chart)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08

SAMPLED BY: Blair Dawson TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION

MATERIAL USE Subgrade SUPPLIER Existing Material

MAX. NOMINAL SIZE < 4.75 mm SOURCE In-Situ

MATERIAL TYPE Clay SAMPLE LOCATION BH-A, AC at 0.91 m

SPECIFICATION Not Applicable STANTEC SAMPLE NO. 4788

IMMERSION PERIOD	96 ± 2 hr	TARGET MAX. DRY DENSITY	1500 kg/m ³
		TARGET OPTIMUM MOISTURE	21.0 %
CONDITION OF SAMPLE	Soaked		
		AS-COMPACTED MAX. DRY DENSITY	1432 kg/m ³
SURCHARGE MASS	4.54 kg	AS-COMPACTED MOISTURE CONTENT	21.1 %
SWELL OF SAMPLE	5.0%	POST-TEST MOISTURE CONTENT	39.9 %
		(TOP 25 mm)	

CBR VALUE AT 2.54 mm PENETRATION	2.4
CBR VALUE AT 5.08 mm PENETRATION	2.1

COMMENTS:

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

REPORT DATE 2022.Dec.13

EVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

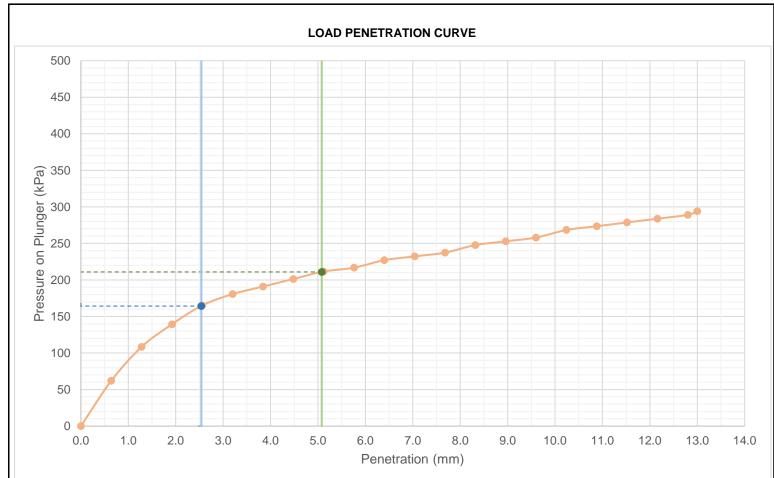
Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

Goulet Street Rehabilitation & Dillon Consulting Ltd. **PROJECT** 1558 Willson Place


Des Meurons Street Reconstruction

Winnipeg, MB R3T 0V4

PROJECT NO. 123316272

Ali Campbell REPORT NO. ATTN: (Chart page - See Page 1 for Data)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Donald Eliazar TESTED BY:

REPORT DATE 2022.Dec.13

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

O Dillon Consulting Ltd. PROJECT Goulet Street Rehabilitation &

Des Meurons Street Reconstruction

Winnipeg, MB

1558 Willson Place

R3T 0V4 PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 2 (Data page - see Page 2 for Chart)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08

SAMPLED BY: Blair Dawson TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION

MATERIAL USE Subgrade SUPPLIER Existing Material

MAX. NOMINAL SIZE < 4.75 mm SOURCE In-Situ

MATERIAL TYPE Clay SAMPLE LOCATION BH-B, AC at 0.95 m

SPECIFICATION Not Applicable STANTEC SAMPLE NO. 4789

IMMERSION PERIOD	96 ± 2 hr	TARGET MAX. DRY DENSITY	1690 kg/m ³
		TARGET OPTIMUM MOISTURE	16.0 %
CONDITION OF SAMPLE	Soaked		
		AS-COMPACTED MAX. DRY DENSITY	1610 kg/m ³
SURCHARGE MASS	4.54 kg	AS-COMPACTED MOISTURE CONTENT	16.0 %
SWELL OF SAMPLE	0.9%	POST-TEST MOISTURE CONTENT	28.1 %
		(TOP 25 mm)	

CBR VALUE AT 2.54 mm PENETRATION	3.9
CBR VALUE AT 5.08 mm PENETRATION	3.6

COMMENTS:

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

REPORT DATE 2022.Dec.13

REVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

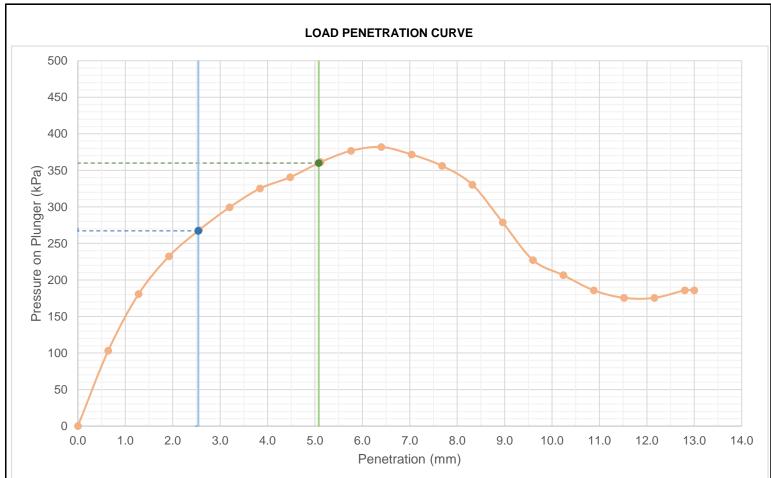
Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

Goulet Street Rehabilitation & Dillon Consulting Ltd. **PROJECT** 1558 Willson Place


Des Meurons Street Reconstruction

Winnipeg, MB R3T 0V4

PROJECT NO. 123316272

Ali Campbell REPORT NO. ATTN: (Chart page - See Page 1 for Data)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Donald Eliazar TESTED BY:

REPORT DATE 2022.Dec.13

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

O Dillon Consulting Ltd. PROJECT Goulet Street Rehabilitation &

Des Meurons Street Reconstruction

Winnipeg, MB

1558 Willson Place

R3T 0V4 PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 3 (Data page - see Page 2 for Chart)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08

SAMPLED BY: Blair Dawson TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION

MATERIAL USE Subgrade SUPPLIER Existing Material

MAX. NOMINAL SIZE < 4.75 mm SOURCE In-Situ

MATERIAL TYPE Organic Silt SAMPLE LOCATION BH-4, AC at 0.88 m

SPECIFICATION Not Applicable STANTEC SAMPLE NO. 4790

IMMERSION PERIOD	96 ± 2 hr	TARGET MAX. DRY DENSITY	1210 kg/m ³
		TARGET OPTIMUM MOISTURE	38.0 %
CONDITION OF SAMPLE	Soaked		
		AS-COMPACTED MAX. DRY DENSITY	1151 kg/m³
SURCHARGE MASS	4.54 kg	AS-COMPACTED MOISTURE CONTENT	37.9 %
SWELL OF SAMPLE	1.2%	POST-TEST MOISTURE CONTENT	46.0 %
		(TOP 25 mm)	

CBR VALUE AT 2.54 mm PENETRATION	5.5
CBR VALUE AT 5.08 mm PENETRATION	5.0

COMMENTS:

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

REPORT DATE 2022.Dec.13

REVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

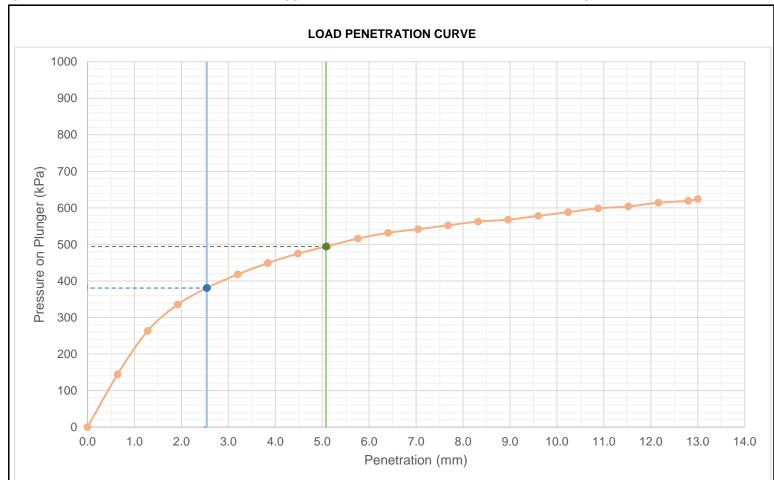
Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

Goulet Street Rehabilitation & Dillon Consulting Ltd. **PROJECT** 1558 Willson Place


Des Meurons Street Reconstruction

Winnipeg, MB R3T 0V4

PROJECT NO. 123316272

Ali Campbell REPORT NO. ATTN: (Chart page - See Page 1 for Data)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Donald Eliazar TESTED BY:

REPORT DATE 2022.Dec.13

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

O Dillon Consulting Ltd. PROJECT Goulet Street Rehabilitation &

Des Meurons Street Reconstruction

Winnipeg, MB

1558 Willson Place

R3T 0V4 PROJECT NO. 123316272

ATTN: Ali Campbell REPORT NO. 4 (Data page - see Page 2 for Chart)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08

SAMPLED BY: Blair Dawson TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION

MATERIAL USE Subgrade SUPPLIER Existing Material

MAX. NOMINAL SIZE < 4.75 mm SOURCE In-Situ

MATERIAL TYPE Clay SAMPLE LOCATION BH-6, AC at 0.82 m

SPECIFICATION Not Applicable STANTEC SAMPLE NO. 4791

IMMERSION PERIOD	96 ± 2 hr	TARGET MAX. DRY DENSITY	1640 kg/m ³
		TARGET OPTIMUM MOISTURE	20.5 %
CONDITION OF SAMPLE	Soaked		
		AS-COMPACTED MAX. DRY DENSITY	1557 kg/m ³
SURCHARGE MASS	4.54 kg	AS-COMPACTED MOISTURE CONTENT	20.4 %
SWELL OF SAMPLE	1.3%	POST-TEST MOISTURE CONTENT	25.8 %
		(TOP 25 mm)	

CBR VALUE AT 2.54 mm PENETRATION	5.5
CBR VALUE AT 5.08 mm PENETRATION	4.6

COMMENTS:

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

REPORT DATE 2022.Dec.13

REVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

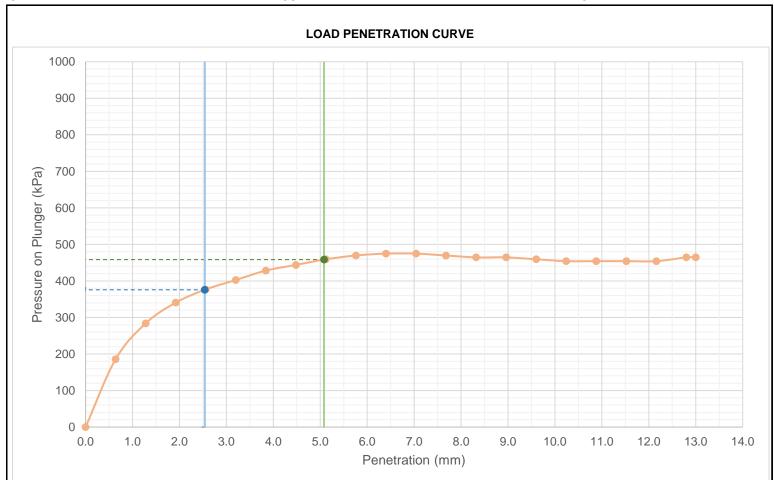
Design with community in mind

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

Goulet Street Rehabilitation & Dillon Consulting Ltd. **PROJECT** 1558 Willson Place


Des Meurons Street Reconstruction

Winnipeg, MB R3T 0V4

PROJECT NO. 123316272

Ali Campbell REPORT NO. ATTN: (Chart page - See Page 1 for Data)

DATE SAMPLED: 2022.Nov.30 DATE RECEIVED: 2022.Nov.30 DATE TESTED: 2022.Dec.08 SAMPLED BY: Blair Dawson SUBMITTED BY: Blair Dawson Donald Eliazar TESTED BY:

REPORT DATE 2022.Dec.13

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

Table 1 - Compressive Strength Test Data

Test	Core Identification	Diameter	Length	L/D Ratio	Correction Factor	Peak Load (kN)	Compressive Strength (MPa)	
No.	identification	(mm)	(mm)		ractor		Measured	Corrected
1	BH-2	144	200	1.39	0.947	898.0	55.1	52.2
2	BH-7	144	177	1.23	0.925	997.2	61.2	56.6